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ABSTRACT 
This paper aims at implementation of a low power adaptive FIR filter based on distributed arithmetic (DA) with 

low power, high throughput, and low area. Least Mean Square (LMS) Algorithm is used to update the weight 

and decrease the mean square error between the current filter output and the desired response. The pipelined 

Distributed Arithmetic table reduces switching activity and hence it reduces power. The power consumption is 

reduced by keeping bit-clock used in carry-save accumulation much faster than clock of rest of the operations. 

We have implemented it in Quartus II and found that there is a reduction in the total power and the core dynamic 

power by 31.31% and 100.24% respectively when compared with the architecture without DA table. 

Keywords: Adaptive filter, Distributed Arithmetic, Finite Impulse Response, Least Mean Square algorithm, 

Lookup Table 

 

I. INTRODUCTION 

An adaptive filter tries to model the 

relationship between two real time signals using an 

iterative approach [1]. 

Four aspects defines an adaptive filter: 

1) The input signals of the filter 

2) The impulse response of the filter 

3) The filter coefficients 

4) The adaptive algorithm that is used to adjust the 

weights 

The LMS algorithm given by Widrow-Hoff 

is used to update the tapped-delay line FIR filter's 

weights because of its simplicity and convergence 

performance provided by it [2]. 

DA based technique without multipliers [3], 

are used as they provide high-throughput processing 

capability and regularity that results in computing 

structures that are cost-effective and area-time 

efficient [4]. 

 

II. THE ADAPTIVE FILTER 
In the block diagram shown in Fig.1 a 

sample of x(n), the input signal, is fed to adaptive 

filter and the filter outputs y(n). This output is then 

compared with d(n), the desired response, and the 

difference of the two is the error signal e(n) as 

shown in (1). 

       e (n) = d (n) - y (n)                    (1) 

 
Fig. 1. The general adaptive filter 

 

 

 
Fig. 2. System identification using adaptive filter 

 

The error signal is fed to the adaptive filter 

which, in a well-defined manner, updates the 

coefficients of the filter from time n to time (n + 1). 

Through this adaptation process, as n increases, the 

magnitude of e (n) decreases, or in other words, the 

output of the adaptive filter tends to the desired 

response signal. 

Let x (n) be the input to an unknown 

system and let d̂ (n) be its corresponding output. 

Then, the desired response signal is given by 

       d (n) = d̂ (n) + η (n)          (2) 

The role of adaptive filter here is to 

precisely represent      d̂ (n) at its output. It can be 

said that the adaptive filter driven by x (n), has 

accurately modeled the unknown system if y (n) = d̂ 

(n). 

 

III. LMS ADAPTIVE ALGORITHM 
In every cycle, the LMS algorithm 

calculates an output and the corresponding error 

value. It then uses the estimated error to update the 

weights in every cycle. The LMS adaptive filter 

weights in nth iteration are updated as per the 

following equations. 

w(n + 1) = w(n) + μ.e(n).x(n)        (3a) 
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Where 

e(n) = d(n) - y(n)                        (3b) 

y(n) = w
T
 (n).x(n)         (3c) 

At the nth iteration, x(n) the input vector 

and w(n) the weight vector, are respectively given 

by, 

x(n) = [x(n), x(n - 1),…,x(n - N + 1)]
T
       (4a) 

w(n) = [w0(n),w1(n),…,wN-1(n)]
T
       (4b) 

In the above equations, d(n) denotes the 

desired response, y(n) denotes the filter's output in 

the nth iteration, e(n) is the error computed in the nth 

iteration and it is used for updating the weights, μ is 

the convergence-factor and N is the length of the 

filter. 

In pipelined designs, only after certain 

number of cycles, the feedback error e(n) becomes 

available, this deley is known as the ―adaptation-

delay‖. Hence the pipelined architectures use e(n - 

m) which is the delayed error in place of recent-most 

error to update the current weight. Here m denotes 

the adaptation-delay. The following equation is the 

weight-update equation of such delayed LMS 

adaptive filter 

w(n + 1) = w(n) +μ.e(n - m).x(n - m)         (5) 

 

IV. DA-BASED APPROACH FOR 

INNER-PRODUCT COMPUTATION 
In every cycle, the LMS adaptive filter has 

to compute an inner-product and this contributes to 

the most of the critical-path. Let the inner-product of 

(3c) be given by (6) for simplicity of presentation, 

and is in fact the arithmetic sum of products which 

defines the response of linear time-invariant (LTI) 

network. 

        N-1 

  y = ∑ wk.xk         (6) 

       
k = 0 

Where xk and wk form the N-point vectors 

corresponding the recent-most N-1 input and current 

weights respectively  for 0 ≤ k ≤ N-1. Assuming the 

bit-width of the weight to be L, each component of 

weight vector can be expressed in 2’s complement 

representation as shown in (7). 

        L-1 

 wk = - wk0 + ∑ wkl.2
-l
          (7) 

        
l = 1 

where wkl is the lth bit of wk. Substituting (7) in 

(6), we get 

       N-1                      L-1 

 y = ∑ xk [- wk0 + ∑ wkl.2
-l
 ]         (8) 

      
k = 0                     l = 1 

 
Fig. 3. Conventional DA-based implementation of 4-

point inner-product. 

rewriting (8), we get 

          N                      N     L-1 

 y = - ∑ wk0.xk  + ∑   ∑ wkl.xk.2
-l
          (9) 

         
k = 1                    k = 1  l = 1 

expanding (9), we get (10) 

y  = - [w10.x1 + w20.x2 + w30.x3 + … + wk0.xk] 

    + [w11.x1 + w21.x2 + w31.x3 + … + wk1.xk] 2
-1

  

    + [w12.x1 + w22.x2 + w32.x3 + … + wk2.xk] 2
-2

  

  : 

    + [w1(B-2).x1 + w2(B-2).x2 + … + wk(B-2).xk] 2
-(B-2)

  

    + [w1(B-1).x1 + … +wk(B-1).xk] 2
-(B-1)

         (10) 

Every term inside the brackets is actually a 

binary AND operation that involves all the bits of 

the constant and one bit of the input and the plus 

signs are arithmetic sum operations. An LUT can 

now be constructed which can be addressed by the 

same scaled bit of all the input variables and can 

access the sum of the terms inside each pair of 

brackets. Fig.3 shows the LUT. 

Converting the sum-of-products form of 

(10) into a distributed form, we get (11) 

 

 
Fig. 4. Carry-save implementation of the shift-

accumulation. 
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Fig. 5. DA-table for generation of the possible 

sums of the input samples. 

 

          N-1                      N-1            L-1 

 y = - ∑ wk0.xk  + ∑ 2
-l
 . [ ∑ xk.wkl ]      (11) 

         
k = 0                    k = 0           l = 1 

the inner-product given by (11) is computed as 

         L-1                             N-1 

 y = [ ∑ 2
-l
.yl ] - y0 where yl = ∑ xk.wkl  (12) 

         
l = 1                            k = 1 

The partial-sum yl for l = 0, 1,2,…,L-1, can 

have 2
N
 possible values, as the elements of the N-

point bit-sequence {wkl for 0 ≤ k ≤ N - 1} can be 

either 0 or 1. 

 
Fig. 6. The structure of DA-based LMS adaptive 

filter of length N = 4. 

 

Now, using the bit-sequence {wkl} as 

address bits for the computation of inner-product, we 

can read out the partial sums yl from the LUT, if we 

precompute all the 2
N
 possible values of yl and store 

it in the LUT. 

Therefore, inner-product of (12) can be 

calculated be calculated in L cycles of shift-

accumulation which is followed by the LUT read 

operations corresponding to L number of bit-slices 

{wkl} for 0 ≤ l ≤ L-1. This is shown in Fig.3. The 

shift-accumulation is performed using carry-save 

accumulator, as the shift-accumulation shown in 

Fig.3 involves significant critical-path. This is 

shown in Fig.4. The bit-slices of vector w are given 

to the carry-save accumulator one after the other in 

the order LSB to MSB. But in case of MSB slices, 

the negative or the 2’s complement of the output of 

the LUT must to be accumulated. This could easily 

be achieved using XOR gates. Therefore, all the bits 

of LUT output are fed to XOR gates with sign-

control input. If MSB slice appears as address, then 

alone the sign-control is set to 1. So the XOR gates 

produce the 1’s complement of the LUT output if 

MSB slice appears as address and does not affect the 

output for other cases. Lastly, the sum and carry 

words that are obtained after L clock cycles are 

added by an adder and the input carry of this adder is 

set to 1 to account for the 2’s complement operation 

of the LUT output for the MSB slice. 

 
Fig. 7. (a) Structure of 4-point inner-product block. 

(b) Structure of weight increment block for N = 4.     

(c) The logic which is used for the generation of the 

control word t for the barrel-shifter for L = 8. 

 

 

Fig. 8. Structure of DA-based LMS AF with N = 

16 and P = 4. 

 

The content of kth LUT location is expressed as 

         N-1 

  ck = ∑ xj.kj      (13) 

         
j = 0 
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where kj is (j + 1)th bit of the N-bit binary 

representation of integer k where k lies in the range 

0 ≤ k ≤ 2
N
 - 1. We can pre-compute ck for 0 ≤ k ≤ 2

N
 

- 1 and store it in a RAM-based LUT of 2
N
 words. 

But here we store (2
N
 - 1) words in a DA-table that 

consists of 2
N
 - 1 registers, in place of storing 2

N
 

words in LUT. Fig.5 shows an example of one such 

DA-table for N = 4. It has only 15 registers that are 

used to store the sums of input words which are pre-

computed. Seven adders in parallel, compute seven 

new values of ck. 

V. DA BASED ADAPTIVE FILTER 

STRUCTURE 
Fig.6 shows the structure of DA-based adaptive filter 

of filter length N = 4. It has a 4-point inner-product 

and a block for weight-increment, along with the 

additional circuits required for the computation of 

e(n), the error value and the control word t for 

barrel-shifters. 

As shown in Fig.7a, the 4-point inner-product block 

consists of a DA-table that has an array of 15 

registers that store the partial-inner-products yl for l 

in range 0 < l ≤ 15 and to select the content of one of 

these registers, a 16 : 1 MUX which is used.  

Bit-slices of weights A = {w3l w2l w1l w0l} 

for 0 ≤ l ≤ L - 1 are given to the MUX as control in 

the order LSB to MSB, and the output of MUX is 

given to carry-save accumulator which is shown in 

Fig. 4. 

The carry-save accumulator shift-

accumulates all the partial-inner-products after L bit-

cycles, and generates two words of size (L + 2)-bit 

each during these L bit-cycles, one for sum and other 

one for the carry. The sum and carry words are 

shifted-added with an input carry ’1’ in order to 

generate filter output which is subtracted from d(n), 

the desired output, later to obtain the error value 

e(n). 

By assuming N = PQ, we can now 

decompose inner-product computation of (6) into N 

= P small adaptive filtering blocks of length P as 

shown in (14) 

      P-1 2P-1                  N-1 

y = ∑ wk.xk +  ∑ wk.xk + … + ∑ wk.xk  

       (14) 

     
k = 0 k = P                 k = N-P 

Each of the above mentioned P-point inner-

product computation blocks, to update P weights, 

have weight-increment unit. The structure for N = 16 

and P = 4 is shown in the Fig.8. It has four inner-

product blocks of length P = 4 as shown in Fig.7a. 

Two separate binary adder-trees are used to add the 

(L + 2)-bit carry and sum produced by these four 

blocks. Four carry-in bits are added to the sum 

words which are the output of four 4-point inner-

product blocks. At the first level binary adder-tree of 

the carry words, two carry-in bits are set as the input 

carry, as carry words are of twice the weight as 

compared to sum words. This is same as inclusion of 

four carry-in to sum words. 

To make the length of sign-magnitude 

separator as L-bit, assuming μ = 1/N, we can 

truncate the 4 LSBs of error e(n) for N = 16. The 

performance of adaptive filter is not very much 

affected by the truncation as the design 

requires the location of most significant 1 of μ.e(n). 

 

VI. RESULTS 
The Low Power Adaptive FIR Filter Based 

on Distributed Arithmetic has been implemented in 
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Quartus II and we have compared it with an 

architecture without distributed arithmetic table. 

 

TABLE I.  POWER CONSUMPTION 
Architecture Power Consumption 

Total Power Core Dynamic Power 

Conventional 

FIR Filter 

110.77mW 24.91mW 

DA-Based 

LMS Adaptive 
FIR Filter 

84.36mW 12.44mW 

 

It is found that there is a reduction in the 

total power and the core dynamic power by 31.31% 

and 100.24% respectively when compared with the 

architecture without DA table. 

 

VII. CONCLUSION 
We have implemented an efficient 

pipelined architecture for high-throughput, low-

power and low-area DA-based adaptive filter. 

Throughput rate is quite significantly improved by 

means of concurrent processing of weight-update 

and filtering operation and the parallel LUT update. 

For computation of the filter output, we have used a 

carry-save accumulation unit for signed partial-

inner-products computation. 
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